

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

A New Source of Atomic Uranium for Absorption Spectroscopy and Other Applications

Rolf Engleman Jr.^a

^a Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico

To cite this Article Engleman Jr., Rolf(1974) 'A New Source of Atomic Uranium for Absorption Spectroscopy and Other Applications', *Spectroscopy Letters*, 7: 1, 547 — 550

To link to this Article: DOI: 10.1080/00387017408067285

URL: <http://dx.doi.org/10.1080/00387017408067285>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

A NEW SOURCE OF ATOMIC URANIUM FOR ABSORPTION
SPECTROSCOPY AND OTHER APPLICATIONS

Key Words: Uranium absorption spectroscopy

Rolf Engleman, Jr.
University of California, Los Alamos Scientific Laboratory
Los Alamos, New Mexico 87544

The absorption spectrum of atomic uranium has been observed in furnace¹, flash discharge², and flash photolysis² experiments. Furnace absorption requires high temperatures (ca. 2300°C), so that the lines are relatively wide and many levels are populated. More important, uranium liquid and vapor are extremely reactive, making furnace design and lifetime critical factors. For quantitative line intensity studies in a furnace, it is also difficult to determine the atomic uranium concentration. The flash discharge experiment in UF₆, while producing uranium quite suitable for high resolution absorption spectroscopy, is not well suited for quantitative studies of line strengths.

Flash photolysis of a suitable uranium compound would make possible the measurement of good relative, and perhaps absolute oscillator strengths for the lower lying lines of U I. This technique has been outlined in the literature³ for Fe I. However, flash photolysis requires a relatively volatile uranium compound which is also sufficiently unstable to be decomposed photochemically. An earlier study² used UI₄ vapor to produce successfully

the atomic uranium absorption spectra by flash photolysis. To obtain enough UI_4 in the vapor phase, a temperature of ca. 600°C is needed, and there is the problem of determining the amount of UI_4 initially present and actually photolyzed to free atomic uranium. The most volatile compound of uranium, UF_6 cannot be used (as was verified by experiment) because of its great stability. Several possible organometallic uranium compounds⁴ were considered but appeared unsuitable due to low vapor pressure or poor stability.

Two borohydride compounds of uranium were found which appear promising. Uranium borohydride⁵, $\text{U}(\text{BH}_4)_4$, is relatively volatile (ca. 0.1 torr at 20°C) and stable in dry air. It does decompose readily above ca. 150°C and has a strong UV absorption spectrum below 280 nm. Another borohydride⁶, $\text{U}(\text{BH}_4)_3(\text{BH}_3\text{CH}_3)$, has a higher vapor pressure (ca. 1.1 torr at 25°C) but is more difficult to prepare.

A conventional flash photolysis apparatus was used with a one meter quartz cell. The linear photolysis flash lamp was fired with a 15 μf capacitor charged to 13 kV. A 5 meter Czerny-Turner spectrograph (JACO 72-360) was used as described earlier². Uranium borohydride vapor at an estimated pressure of 0.02 torr was used either alone or diluted with argon. Time delay between the photolysis and background flash lamps was 35 $\mu\text{ sec}$. Uranium lines were identified from the most recent list⁷.

The regions between 411 and 478 nm and between 478 and 598 nm were investigated at high resolution. The former region was filled with a high density of sharp absorption lines, some of which were identified as those of U I . Most of the remaining lines are due to the band spectrum of the BH free radical⁸ although the presence of other atomic or molecular lines cannot be ruled out. These BH lines would make difficult any measurements on the atomic uranium lines in this region.

The region between 495 and 598 nm contained only 89 lines. Sixty-one were identified as those of U I with lower levels up to 10347 cm^{-1} . Eight lines of U II were found with lower levels up to 7166 cm^{-1} . The lower level lines of U I dominated in strength and the U II lines were relatively weak. The U II presumably arises from secondary photoionization of U I because the ionization potential is only 6 ev. The remaining twenty unidentified lines are weak and probably also due to U I or II. The presence of U I lines with rather high lower levels implies some heating of the gas by the photolysis flash. This might be decreased by the addition of more argon or other inert gas to the starting gas mixture. Since this region appears free of molecular spectra, quantitative studies of the U I lines should be possible.

These preliminary experiments have uncovered a useful source of atomic uranium for fundamental studies, such as oscillator strength measurements for low levels of U I and collision width measurements. Another possibility is the use of uranium borohydride as a source of simple uranium-containing molecular spectra. In addition, uranium borohydride might have some practical applications as a source of atomic uranium.

ACKNOWLEDGMENTS

The author wishes to express his appreciation to E. R. Bernstein and T. A. Keiderling for a sample of uranium borohydride and to L. J. Radziemski and D. W. Steinhaus for encouragement and advice. This work was performed under the auspices of the U. S. Atomic Energy Commission.

REFERENCES

1. L. F. H. Bovey, *J. Sci. Instru.* **32**, 376 (1955).
2. L. J. Radziemski, D. W. Steinhaus, and R. Engleman, Jr., *J. Opt. Soc. Amer.* **61**, 1538 (1971).

3. A. B. Callear and R. J. Oldman, *Trans. Fara. Soc.* 63, 2888 (1967).
4. H. Gillman, *J. Amer. Chem. Soc.* 79, 4921 (1957) and earlier paper referenced here.
5. H. I. Schlesinger and H. C. Brown, *J. Amer. Chem. Soc.* 75, 219 (1953).
6. H. I. Schlesinger, H. C. Brown, L. Horvitz, A. C. Bond, L. D. Tuck, and A. O. Walker, *J. Amer. Chem. Soc.* 75, 222 (1953).
7. D. W. Steinhaus, M. V. Phillips, J. B. Moody, L. J. Radziemski, K. J. Fisher and D. R. Hahn, Los Alamos Scientific Laboratory report LA-4944 (August 1972).
8. J. W. C. Johns, F. A. Grimm, and R. F. Porter, *J. Mol. Spectro.* 22, 435 (1967).

Received October 19, 1974

Accepted October 25, 1974